Cybernetics and Systems: An International Journal, 23:483-515, 1992

RCE CLASSIFIERS: THEORY AND PRACTICE

MICHAEL J. HUDAK
38 Oliver Street, Binghamton, New York 13904

Restricted Coulomb Energy (RCE) classifiers, as described by Scofield et al.
(1988), are shown to have a conceptual relationship with hyperspherical classifi-
ers developed in the 1960s by Batchelor (1974). These classifiers are also shown
to share similarities with networks of localized receptive fields and with psycho-
logical models of concept formation. Next, the performance of some RCE classi-
fiers is examined. The ability of a trained RCE classifier to generalize to new
instances is compared with that of several well-known classifiers. Then, four
previously unexamined aspects of RCE classifiers are investigated empirically:
(1) the influence of potential wells on training rate, (2) the influence of potential
wells on storage requirement, (3) the influence of potential wells on generaliza-
tion to new instances, and (4) rejection of an instance from an unknown class.
Modifications of a traditional RCE classifier improve average correct classifica-
tion at generalization from 83.2 to 90.7% without significant change in computa-
tional cost. By comparison, a nearest-neighbor performs at 93% and a feed-
forward multilayer neural network at 88.4% on the same data. Surprisingly,
when the improved RCE network is compared with its underlying adaptive
nearest-neighbor component, one finds that the incorporation of potential wells
into the RCE classifier does not reduce training time or instance storage require-
ment, nor does it improve generalization to new instances.

INTRODUCTION

Pattern classifiers constructed from the union of hyperspherical decision
regions have been studied since the early 1960s. The earliest work (e.g.,
Cooper, 1962, 1966) was primarily theoretical in nature. Later empirical
work by Batchelor (1974) compared the shape of decision regions for hy-
perspherical classifiers with those of other nonparametric classifiers. Not
until the work of Lee (1989) and Lee and Lippmann (1990) was there a

483

484 M. J. HUDAK

thorough empirical examination of hyperspherical classifiers and their spe-
cial case, Restricted Coulomb Energy (RCE) classifiers.

Hyperspherical classifiers have attracted attention for several reasons
and have been viewed in several ways, as demonstrated by the following
list.

Although resembling the nearest-neighbor classifier (Duda and Hart, 1973)
in its storage of prototypical patterns, a hyperspherical classifier is
typically more conservative of storage (Batchelor, 1974: 49) and can
abstain from classifying a pattern from an unknown category (Li,
1988: 21).

Although a hyperspherical classifier is typically trained by repeated pre-
sentation of training instances, as is required in backpropagation train-
ing of feedforward neural networks, hyperspherical classifiers typi-
cally require considerably fewer training epochs (complete
presentations of training instances) than do neural networks (Lee,
1989; Lee and Lippmann, 1990).

A hyperspherical classifier has been viewed as an ‘‘exemplar-based”
model of biological memory in which memory is constructed from
representation of experiences (Kanerva, 1988).

Suitability of implementing hyperspherical classifiers in hardware has been
recognized in several works (Flynn et al., 1988; Potter, 1987; Reilly et
al., 1987; Rimey et al., 1986).

A form of hyperspherical classifier has been conceptualized as a neural
network and termed the RCE model. This provides a high-density
memory system unencumbered by the storage limitations (Hopfield,
1982) of single-layer, recurrent networks (Bachmann et al., 1987; Sco-
field et al., 1988).

Hyperspherical receptive fields have been used as a front end to a trainable
neural network classifier (Moody and Darken, 1989, Nowlan, 1990).

This study has three major purposes: (1) to show the relationship be-
tween the RCE classifier (Scofield et al., 1988) and the hyperspherical
classifier as described by Batchelor (1974); (2) to point out similarities of
hyperspherical classifiers to some work in neural networks and cognitive
psychology; and (3), building on the experimental work of Li (1988) and
Lee (1989), to explore several practical issues that arise when RCE classi-
fiers are applied to classification problems with real data.

RCE CLASSIFIERS: THEORY AND PRACTICE 485
HISTORICAL OVERVIEW

Batchelor's Compound Classifier

Types of hyperspherical classifiers were introduced by Cooper (1962, 1966)
and Batchelor (1968, 1969); a summary is provided in Batchelor (1974).
Like the nearest-neighbor classifier, the hyperspherical classifier is based on
the storage of instances (each represented as a numeric vector called a “‘pat-
tern’”) from known classes creating points in a metric space. The distance
function defined on this space provides the basis for assigning a pattern of
unknown class to a known category. Unlike the nearest-neighbor classifier,
each point [also called a “‘locate’” by Batchelor (1974)] is associated with a
radius that defines the point’s region of influence. In other words, each
locate-radius pair defines a decision region associated with the class of the
locate.

Batchelor (1974) conceived of the hyperspherical compound classifier as
a layered device:

The bottom layer contains subclassifiers. Each subclassifier decides whether
an input instance lies inside a hypersphere.

The top layer combines the subdecisions from the bottom layer by forming
their logical union.

The formulation for the 2-class case (i.e., for a classifier capable of distin-
guishing two classes) is provided as an example. Assume there are N, stored
patterns in class 1: py;, . . ., ﬁlNl. The radii of the stored patterns are
represented by Ry, . . . , Ryy,. the ith subdecision U, is calculated as

1, if 17, - %1, < R,
U,=sign(R,;- D) = 0, if Ip,; - ¥ 1, =Ry, (1)

1, if U, - X1, > R,

where D,; is the Euclidean distance defined by

D;= (;(pijk = xk)2)5 @

486 M. J. HUDAK

and X, the instance to be classified, is represented by coordinate values x;,
s 5 X
The complete decision of the classifier (i.e., the class to which the
instance x_is supposed to belong) is then calculated as

1, it U (U=1)
i=1
C= 3)
2, otherwise

Batchelor (1974) developed procedures that construct a hyperspherical
compound classifier from a set of instances of known class. These proce-
dures require the iterative presentation of instances until either they are all
correctly classified, an equilibrium is established (i.e., further changes of
radii and locates are insignificant), or a limit on iterations is exceeded. The
elements of his approach are given below for the 2-class case. In following
Batchelor’s notation, T(feacher) is the actual class to which the training
instance X belongs; C(classifier) is the class of X according to the previous
decision of the classifier. One of three situations arise upon each presentation
of a training instance:

1. C and T are equal. No changes are necessary.

2. C = 2, T = 1 (x lies outside all hyperspheres). Find the hypersphere
closest to X. Then move the locate of this hypersphere toward X and
increase the radius of the hypersphere.

3. C =1, T = 2 (X lies inside any of the hyperspheres). The locate of
each hypersphere whose class is 1 that encloses X is moved away from
X, and its radius is reduced.

Batchelor’s training algorithms based on these principles require incremental
adjustment of two parameters in the classifier:

1. Locates (which begin as instances from the training set).
2. Radii (each of which is associated with a locate).

Determination of the step sizes for each of these increments is troublesome.
Designating the incrementation parameter for locate moving as £ and for
radius adjustment as /, Batchelor (1974: 132-133) stated:

RCE CLASSIFIERS: THEORY AND PRACTICE 487

At the end of a long learning sequence, the classifier is in a state of
dynamic equilibrium, with a small tremor on its locates and weights.
The magnitude of this vibration increases with k& and /. When we stop
learning, we fix the classifier at some arbitrary point in this vibrating
equilibrium state. The accuracy of this fixed classifier is likely to be
reduced if k£ and / are large. On the other hand, the learning will taken
an unduly long time if very small values of k and / are used. . . .
Certainly, we should never use larger values, although if computer time
is available, smaller values can be used. It should be possible to reduce
k and / progressively, in such a way that we obtain rapid learning, with a
precise classifier available afterwards. We do not yet know how this
should be done to achieve optimal results.

Batchelor (1974: 130-134) extended this 2-class definition to an arbi-
trary number of classes with an N-class classifier consisting of N 2-class
compound classifiers. The ith subclassifier is individually trained to separate
the ith class from all others. During testing the classifiers are operated in
parallel. Ambiguity in the classification is detected by recognizing the simul-
taneous outputs from two or more subclassifiers.

Batchelor (1974: 133) remarked that for the ranges of k and / he had
tested that he ‘‘never encountered any significant changes occurring after
about 5000 iterations.”” (An ‘‘iteration’ refers to one presentation of all
training patterns, i.e., a training epoch.) Nevertheless, Batchelor (1974) sug-
gested allowing 10,000 iterations before invoking his procedures to add
more locates (growing), or removing redundant ones (pruning).

Summary of Batchelor’'s Work

Details of Batchelor’s procedures for training, growing, and pruning his
compound classifier have been omitted here; the interested reader is referred
to Batchelor (1974) for more information. The most significant characteris-
tics of his basic classifier are summarized below.

Lack of concern for stored instances (points) as ‘‘prototypes’’: Stored points
can be moved in an attempt to minimize storage of instances from the
training set. Hence, a stored point (called a locate by Batchelor) typi-
cally becomes unlike any instance in the training set and only defines the
center of a hypersphere.

Incremental training: A locate and its radius are incrementally modified to

488 M. J. HUDAK

produce a decision region. Every locate in the classifier is a candidate
for modification. Typically, up to 5000 training epochs are needed to
classify all training instances correctly.

Concern for minimizing the number of locates in the classifier: New training
instances are not stored unless the classification error over the training
set exceeds a user-specified threshold and further improvement appears
unlikely from modification of locates and radii. Furthermore, redundant
or little-used locates can be removed by pruning.

No suggestion for disambiguation of classes: In the 2-class classifier formu-
lated by Batchelor the region within hyperspheres is one class and the
region outside any hypersphere is another class. Ambiguity of class
membership cannot exist. For more than two classes, Batchelor pro-
posed a method that detects ambiguity but cannot resolve it.

RCE Networks

RCE classifiers are inspired by systems of charged particles in a three-
dimensional space. I intend to show the relationship between this model, in
its implementation (Scofield et al., 1988), and Batchelor’s compound classi-
fier (Batchelor, 1974). The following brief presentation leading up to the
RCE model uses the notation of Bachmann et al. (1987) and Scofield et al.
(1988) for the sole purpose of preventing a conflict for the reader who
directly consults these works.

The classifier’s name (RCE) pertains to the form of the system’s
Liapunov function (equation 4), which is isomorphic to the classical electro-
static potential between a positive test charge and negative charges Q; at the
sites x; (for three-dimensional input space and L = 1). Viewed another way,
the X, form a set of distinct memories in R".

5:%2 QM- 70" @)

where £ is the electrostatic potential induced by fixed particles with charges
—Q,, p is a vector describing the network state, X; is the site of the ith
memory for m memories in R”, and L is a parameter related to the network
size. Then u(f = 0) relaxes to u(t = T) = X, for some memory i according
to

RCE CLASSIFIERS: THEORY AND PRACTICE 489
-5 = A - = -(L — -
H= ;Tz_ZQi"»u_xi“z(+2)(.U—x,') 5)

which ‘‘describes the motion of a positive test particle in the electrostatic
field E’u_ generated by the negative fixed charges —Q,, . .., —Q,, at X,

., X,,”” (Bachmann et al., 1987: 7530). Describing this system, Scofield
et al. (1988: 676) stated:

The N-dimensional Coulomb energy function then defines exactly m
basins of attraction to the fixed points located at the charge sites X;. It
can be shown (Bachmann et al., 1987; Dembo and Zeitouni, 1988) that
convergence to the closest distinct memory is guaranteed, independent
of the number of stored memories m, for proper choice of N and L.
Equation (4) shows that each cell receives feedback from the network in
the form of a scalar

m
2 Qi - It
i=1

Importantly, this quantity is the same for all cells; it is as if a single
virtual cell was computing the distance in activity space between the
current state and stored states. The result of the computation is then
broadcast to all of the cells in the network.

©

Referring to an equilibrium feedforward network with similar properties
described in Reilly et al. (1982), Scofield et al. (1988: 676-677) continued:

This model does not employ a relaxation procedure, and thus was not
originally framed in the language of Liapunov functions. However, it is
possible to define a similar system if we identify the locations of the
““prototypes’’ of this model as the locations in state space of potentials
which satisfy the following conditions

~ Q:/R,, iflji- %< A
£ = ’ ()

0, 17— %> 4,

490 M. J. HUDAK

where R, is a constant.

This form of potential is often referred to as the ‘‘square-well”’
potential. This potential may be viewed as a limit of the N-dimensional
Coulomb potential, in which the 1/R(L = 1) well is replaced with a
square well (for which L > 1). Equation (7) describes an energy land-
scape which consists of plateaus of zero potential outside of wells with
flat, zero slope basins. Since the landscape has only flat regions sepa-
rated by discontinuous boundaries, the state of the network is always at
equilibrium, and relaxation does not occur. For this reason, this system
has been called an equilibrium model. This model, also referred to as
the Restricted Coulomb Energy (RCE) model, shares the property of
unrestricted storage density.

The relationship between the RCE network classifier and Batchelor’s
compound classifier is straightforward. Both systems store training in-
stances, and Batchelor’s hypersphere radii (R;;) correspond to the RCE clas-
sifier’s potential well boundaries (A,) [Eq. (7)]. Significant differences in the
formulations arise from the RCE classifier’s generalization to multiple
classes, the meaning of a ‘““locate’’ or ‘‘memory,”’ and the treatment of hy-
persphere radii and potential well boundaries. Although Batchelor requires
that all stored patterns belong to one class in a given instance space, the RCE
classifier provides for multiple classes in the instance space simply by stor-
ing instances from multiple classes. Furthermore, unlike Batchelor’s formu-
lation, memories in an RCE classifier cannot be modified: once an instance
is stored it can be removed but not moved to another location. Finally,
although Batchelor’s hypersphere radii can both increase and decrease, an
RCE potential well boundary can only decrease as training proceeds.

A simple training procedure for the RCE classifier is provided in Reilly
et al. (1982) and is consistent with the characterization presented in Lee
(1989).

Networks of Localized Receptive Fields (NLRF)

Hyperspherical classifiers have a close relative in networks of localized re-
ceptive fields (NLRF) (Moody and Darken, 1989), also known as radial
basis functions (Nowland, 1990). Although evidence does not exist of inter-
action between research on hyperspherical classifiers and NLRF, examining

RCE CLASSIFIERS: THEORY AND PRACTICE 491

their similarities and differences will provide additional perspective on the
hypersphere paradigm. The work of Moody and Darken (1989) will be cited
as representative of its genre.

NLREF classifiers were developed in response to extremely long training
times encountered with backpropagation trained feedforward networks. In
this sense the reduced training requirement of NLRF classifiers, relative to
feedforward networks, parallels that of RCE networks to Batchelor’s hy-
perspherical classifiers. Noteworthy comparisons between hyperspherical
classifiers and NLRF classifiers are sixfold.

1. Terminology: ‘“Center of receptive field”” in NLREF literature is synony-
mous with the terms ‘‘hypersphere center,” ‘‘locate,” and ‘‘stored
point”’ encountered in writings about hyperspherical classifiers, but
methods for determining receptive field centers and locates are not iden-
tical.

2. Distance of influence for a ‘“‘center’’: The influence of a hypersphere
center in a hyperspherical classifier is limited by the radius of its hyper-
sphere. In an NLREF classifier the influence of a center extends to infin-
ity but with an intensity that diminishes exponentially with the distance
from the center.

3. Selection of number of centers: Moody and Darken (1989) proposed
methods for NLRF classifiers that require the a priori selection of the
number of receptive field centers for the set of training instances. Typi-
cal training algorithms for hyperspherical classifiers do not have this
restriction.

4. Location of centers: Moody and Darken (1989) recommended forming
centers from the set of training instances with either standard k-means
clustering or its adaptive formulation. As is typical of locate formation
in Batchelor (1974), cluster centers usually do not correspond to any
training instance.

5. Creation of receptive fields: Moody and Darken (1989) proposed deter-
mining the ‘““width” of each receptive field after all the centers are
chosen. Width is similar to the concept of standard deviation of a distri-
bution. Hypersphere radius is also similar to this width, but the radius
puts a hard limit on the center’s influence. Furthermore, training algo-
rithms for hyperspherical classifiers do not separate, in this manner, the
processes of hypersphere center selection and radius computation.

6. Combining information from receptive fields: NLRF classifiers as de-
scribed by Moody and Darken (1989) employed output weights called

492 M. J. HUDAK

receptive field amplitudes that are adjusted by a least mean square learn-
ing rule. These weights combine the responses of the receptive field
functions in producing a single classification. In contrast, Batchelor’s
(1974) compound classifier does not contain weights. An unknown in-
stance falling within a hypersphere is assigned the class associated with
that hypersphere. If an instance falls within hyperspheres belonging to
more than one class, the classifier is unable to resolve the ambiguity.
RCE classifiers (Scofield et al., 1988) allow for associating a potential
well ““depth’’ with each stored point; depth is similar to the concept of
weight in an NLRE.

Models from Cognitive Psychology

Two models of concept representation in cognitive psychology show strong
parallels to the compound classifier of Batchelor (1974) and the RCE classi-
fier of Scofield et al. (1988). Much of this overview is taken from Matheus
(1987), who outlined the models termed the ‘‘prototype view’’ and the ‘‘ex-
amplar view.”

The prototype view of concept formation posits that a concept is repre-
sented by a summary description in which the features need merely be char-
acteristic of the concept instances. ‘“The summary description is called the
‘prototype’ of the concept and encodes the most central features of the con-
cept’s instances. A prototype is an abstract representation and need not de-
pict an actual instance of the concept’ (Matheus, 1987: 45). Notice the
similarity between prototypes and Batchelor’s locates. Although a locate be-
gins as a training instance, its ability to ‘‘drift’’ during training can lead to a
collection of feature values unlike those possessed by any instance of the
class. Note that the features in a hyperspherical classifier must be numeric
whereas those of the prototype view need not be. Although the prototype
model (e.g., Posner and Keele, 1970) dates from the same period as Batche-
lor’s (1968, 1969) early work, evidence does not exist of cross-fertilization
between these two fields.

Matheus (1987) pointed out major strengths and weaknesses of the pro-
totype model. Given its relationship to Batchelor’s compound classifier,
these characteristics should be considered if this classifier is incorporated
into a larger learning system. In favor of the prototype model, Matheus
noted that it mimics human response in unclear and in typical cases. On the
other hand, most prototype representations retain no information about each
feature’s range of values. Only information about the typical value is re-

RCE CLASSIFIERS: THEORY AND PRACTICE 493

tained. Consequently, correlational information among a concept’s features
is also lost.

As an alternative to the prototype model, Matheus (1987) presented
what he called the exemplar view. Instead of constructing an explicit sum-
mary description for each concept, an exemplar model represents a concept
as a collection of instances or exemplars (Medin and Schaffer, 1978; Medin
and Smith, 1984). In a pure exemplar model (Reed, 1972) all exemplars
exist as descriptions of individual instances. The relationship between the
exemplar model and the RCE classifier is straightforward. Both systems
store instances as collections of features that remain unchanged as learning
proceeds, but, unlike the RCE classifier, these exemplar models do not sur-
round exemplars with hyperspheres.

In contrast to the prototype model, the exemplar model provides for
simpler concept formation and modification. Because a concept is repre-
sented by a collection of exemplars, modification occurs each time a new
instance is added to the concept’s description—no information about a fea-
ture’s values is lost as new exemplars are encountered. Hence the range of
encountered feature values within a concept is retained, allowing the exami-
nation of feature correlation. The major defect of the exemplar approach is
its enormous storage requirement for complex concepts. Although Matheus
(1987) suggested that storage can be reduced by the selective collapse of
some exemplars into prototypes, he did not explain how this can be done.

Experimental Investigations

The performance issues of RCE classifiers addressed in this paper rest on the
experimental work of Li (1988) and Lee (1989). A brief summary of their
work will provide an understanding of the questions they answered and the
ones they did not explore.

Li (1988) examined the feasibility of a hypersphere-based classification
system for doing low-level diagnosis of computer modules. She tested six
training algorithms, elements of which are derived from Batchelor (1974).
Two algorithms use incremental modification of radii; the remainder per-
form large-scale radius reductions, each reduction being sufficient to exclude
at least one locate from a conflicting class. Half the algorithms allow locates
to move, as described in Batchelor (1974); the remainder require locates to
remain stationary, as in the RCE classifier of Scofield et al. (1988).

A database of 124 module signatures drawn from 35 different classes
was divided into a training set of 76 patterns and a test set of 48 patterns.

494 M. J. HUDAK

Among the six algorithms, differences in the storage required are reportedly
insignificant. Test performance ranged from 54 to 62% classification accu-
racy, defined as the predicted electronic component being either the first item
on the prediction list or one of the ties for the first position. Best perfor-
mance was achieved by an algorithm using incremental modification of radii
and locates. Since these algorithms are sensitive to arbitrary parameters and
the ordering of the training data, it is not possible to determine whether these
factors, or the invariant aspects of the algorithms, account for the differences
in performance. Multiple trials would have provided some insight into this
matter.

Lee (1989) and Lee and Lippmann (1990) provided an evaluation of
eight classifiers, including a version of Batchelor’s hyperspherical compound
classifier and its special case, the RCE classifier. In evaluating the hy-
perspherical classifier, Lee (1989: 118-121) reported the three significant
points summarized below:

1. Decreasing the value by which hyperspheres were incrementally modi-
fied greatly prolonged training and improved generalization accuracy by
only 1 to 2%.

2. When the number of hyperspheres was not limited by memory con-
straints, the improvement in generalization accuracy resulting from
moving locates was insignificant. When memory was limited, moving
locates significantly improved generalization accuracy, but the level
achieved did not exceed that obtained with unconstrained storage.

3. Two criteria were examined for removing a locate from the classifier:
the size of its hypersphere and the locate’s effectiveness in correctly
classifying training instances. Although a locate’s effectiveness proved
the better indicator of its contribution to test set classification, Lee did
not report the degree of improvement.

Lee then proceeded with a closer look at the RCE classifier, which he
characterized as a special case of ‘‘a generalized version of algorithms from
the work of Batchelor (1974, 1978)”’ (Lee, 1989: 72). Lee’s experiments,
conducted with four databases and eight classifiers, yielded several major
results about the RCE classifier. Of primary concern are the following:

The RCE classifier’s generalization error exceeded the weighted average
error of all classifiers by approximately 1 standard deviation on three of
the databases and equaled the weighted average error in the remaining
case (Lee, 1989: 133-134).

RCE CLASSIFIERS: THEORY AND PRACTICE 495

The RCE classifier trained, on the average, in 11% of the weighted average
time of all the classifiers (Lee, 1989: 131).

Like the nearest-neighbor classifier, the RCE classifier stores instances from
a training set. But whereas the nearest-neighbor classifier stores the
entire set, the RCE classifier typically stores a minority of training set
instances. Storage requirements for the RCE classifier ranged from 5.4
to 29.5% of the training instances, with the weighted average of 12.1%
(Lee, 1989: 130). Values are for an ‘“‘unpruned’ classifier—one in
which little-used instances have not been removed.

To summarize, although Lee’s RCE classifier demonstrated favorable
training times and memory requirements, it proved deficient in the correct
classification of new instances compared with the other classifiers.

EXPERIMENTS

Experimental Background

Although Li (1988) and Lee (1989) performed extensive empirical studies of
many hyperspherical classifiers, including RCE, several basic questions re-
mained unanswered. Four such issues addressed in my study appear below.

1. Although Lee (1989) compared an RCE classifier with seven well-
known classifiers, the experiment that would have tested the signifi-
cance of hyperspheres was not performed. That experiment compares an
RCE classifier to its underlying incremental nearest-neighbor compo-
nent.

2. Storage requirement, training epochs, number of hyperspheres modi-
fied, and generalization to new instances are all affected by the order in
which training instances are presented to a hyperspherical classifier. For
Batchelor (1974), instance ordering was crucial in avoiding oscillation
of locates and nonconvergence of a global error function over the train-
ing instances. Elimination of hypersphere enlargement in the RCE clas-
sifier avoids these problems but brings the issues mentioned above to
prominence.

3. Lee (1989: 133-134) showed that the hyperspherical classifier is defi-
cient in its ability to generalize, compared with the other classifiers he
tested. Nevertheless, he did not propose a method for improving this
performance.

496 M. J. HUDAK

4. Li (1988: 21) stated that the hyperspherical ‘‘classifier can return no
match when the input pattern does not fall into any hypersphere in the n-
space.”” That a hyperspherical classifier can, in theory, report that a test
instance does not belong to a known category is obvious; yet this feature
has not been tested for any type of hyperspherical classifier.

Data Preprocessing

Implementation constraints for the various RCE classifiers, the nearest-
neighbor, and the incremental nearest-neighbor (INN) classifier require that
each feature value be mapped to one of the 256 decimal integer values (0-
255). Maximum and minimum values for each feature of the training pat-
terns were mapped to the interval end points, with intermediate values ap-
propriately scaled. The range between end points was then used to scale the
test patterns. The remaining classifiers—cascade-correlation, quickpropaga-
tion trained multilayer feedforward neural network, and decision tree
classifier—do not require preprocessing of instances.

Databases

Experiments were performed with three public domain databases: the Iris
database of Fisher (1936), the Sonar database of Gorman and Sejnowski
(1988), and the Congressional voting records database of 16 key votes from
the 98th Congress, 2nd session, 1984. Database characteristics and details of
the instance sets used for training and generalization are provided in Appen-
dix A.

Experimental Regime

Unless stated otherwise, the values reported for the RCE classifiers and INN
are based on 100 training trials. Specifically, although trials were conducted
with the same sets of training and test instances, each trial was performed
with a unique random ordering of the training instances. From these trials,
the average value and the standard deviation of the average are reported. The
effect of training instance order on performance is thus revealed. Further-
more, expected levels of performance are established for each classifier that
can then be used in meaningful comparisons.

All the RCE classifiers employ a user-specified parameter (DIST_PCT)
that reduces a hypersphere radius during training to a percentage of the

RCE CLASSIFIERS: THEORY AND PRACTICE 497

distance between hypersphere centroids from different classes. A complete.
description of this parameter and the classification algorithms written in an
ALGOL-like pseudocode can be found in Appendix B. Trials were per-
formed with DIST PCT set at each of the values 15, 35, 55, 75, 95, and
99%. Except where noted, the results presented were obtained with
DIST_PCT set at 99%, which consistently yielded the highest level of gen-
eralization while correctly classifying the entire set of training instances.

All statistical tests performed on the experimental results rest upon two
basic assumptions:

1. That the sample size is sufficiently large for the sample parameters to
provide a good approximation to those of the underlying population.
2. That the values are normally distributed.

In accordance with these assumptions, z scores (Dowdy and Wearden, 1991:
207-208; Sachs, 1982: 272) are used in all hypothesis tests.

Throughout the presentation of results the hypothesis is tested that a pair
of performance means from different classifiers are the same. In other
words, does a difference in classifier design result in different performance?
In several cases the performance values are expressed as percentages. One
reviewer has pointed out that distributions of percentages near the ends of
the range (<20%; >80%) tend to be binomial rather than normal. The
remedy is to transform each distribution to better approximate a normal
distribution before performing tests of hypotheses about the means (Alder
and Roessler, 1972). The transformation used here is the arcsin of the square
root of each percentage yielding a value in degrees. Means and standard
deviations are computed from these values before computing z scores used in
the hypothesis test.

In the tables, classifiers are ranked from best (top) to worst (bottom)
with respect to weighted average performance. Weighted averages are com-
puted from the performance on each database and the percentage of either
training or testing instances in the database, relative to the total number of
such instances from all databases.

Classifier Comparisons

Although this study is primarily about the RCE classifier, its performance
compared with that of other classifiers is important in establishing is relative
worth. For this purpose, the four classifiers listed below are also tested:

498 M. J. HUDAK

Feedforward multilayer neural network with quickpropagation training
(Fahlman, 1988)

Cascade-correlation neural network (Fahlman and Lebiere, 1990)

Decision tree classifier (c4.5) (Quinlan, 1986)

Nearest-neighbor classifier (Duda and Hart, 1973).

Computer code for the first three classifiers listed above was obtained from
the authors. A basic RCE classifier known as the disjoint spheres/no drift
(DSND) algorithm (Li, 1988: 62) is used for comparison.

Table 1 displays the ability of DSND to generalize, together with that of
the other four classifiers. Training of the quickpropagation and cascade-
correlation networks proceeded until- all training instances were correctly
classified for each of 10 randomly selected initializations of network
weights. These two classifiers’ strong and unpredictable dependence on ini-
tial weight values is surprising. One plausible explanation for this depen-
dence is the use of asymmetric error correction to each training instance’s
target value (R. L. Watrous, personal communication).

Note that the methodology for training and testing quickpropagation on
the Sonar database differs from that employed by Gorman and Sejnowski
(1988). Consequently, these results are not comparable with theirs.

From Table 1 the following conclusions can be drawn. First, that an
RCE classifier can successfully compete with several well-known classifiers

TABLE 1. Correct Classification of New Instances

Instances classified (%)

Iris Sonar Voting Weighted
Classifier database database database average
Nearest-neighbor

(kg = 1) 96.0 95.2 91.2 93.0
Quickpropagation 91.1 £ 2.1 755 £ 2.6 939 + 1.5 88.4
Cascade-correlation 942 £+ 2.1 749 £+ 3.1 914 + 0.0 87.1
c4.5 96.0 65.4 94.5 86.5
DSND 89.8 + 3.1 835+ 25 81.0 = 3.0 83.2

Averages and standard deviations for quickpropagation and cascade-correlation networks
obtained from 10 different initializations of network weights. Number of hidden units chosen
for the quickpropagation trials: Iris database, 2 or 3; Sonar database, 4; Voting database, 2.
Single trials are reported for c4.5 and nearest-neighbor classifier, because performance is
unaffected by training instance order.

RCE CLASSIFIERS: THEORY AND PRACTICE 499

in its ability to generalize, but that its performance tends toward the lower
end of the range; this corroborates the finding of Lee (1989). Second, that if
storage is not limited, the nearest-neighbor classifier is the best overall
choice; this finding is, for the most part, also consistent with Lee (1989).

Significance of Hyperspheres

Although Cooper (1962, 1966) showed the optimality of hyperspherical de-
cision boundaries for particular probability distributions, the significance of
the hypersphere has not been demonstrated in classifiers of the types de-
scribed by Batchelor (1974) and Reilly et al. (1987). Although RCE classifi-
ers have been compared with other well-known classifiers (e.g., the previous
section, Lee, 1989), each of the two basic components of the RCE classifier
has not been examined for its individual contribution to the classification
process. These components are (1) locates (represented as numeric vectors)
and an associated distance metric and (2) a hypersphere (potential well in
RCE terminology) about each locate that limits the attraction of the locate to
a test instance. My approach for examining the contribution of hyperspheres
to the classification process was to construct two RCE training algorithms
(RCE-1 derived from DSND and RCE-2 derived from RCE-1), each of
which successively limits the influence of its hyperspheres. Finally, a third
classifier INN, derived from RCE-2, in effect maintains hyperspheres with
infinite radii, hence eliminating the influence of hypersphere boundaries in
the classification process. INN (k, = k, = 1) is essentially the IB2 algo-
rithm of Aha et al. (1991), differing only in the choice of distance metric.
Here k, is the number of nearest neighbors used in training and X, is the
number used in generalization. INN can be regarded as the nearest-neighbor
component underlying the RCE classifiers examined in this study. Details of
all the RCE classifiers and INN may be found in Appendix B.

The role of hyperspheres is of interest in at least three aspects of the
classification process:

1. Generalization to new patterns .from known classes.

2. Percentage of the training set instances needed to classify all training
instances correctly.

3. Number of training epochs needed to classify all training instances cor-
rectly.

500 M. J. HUDAK

TABLE 2. Correct Classification of New Instances

Instances classified (%)

Iris Sonar Voting Weighted

Classifier database database database average
INN (k, = k, = 1) 96.6 = 2.0 919 £ 2.4 89.5 £ 1.8 91.1
RCE-2 95.0 £ 2.4 91.8 £ 2.2 89.2 £ 2.0 90.7
RCE-1 91.7 £ 3.2 853 £ 24 85.7 £ 2.4 86.4
DSND 89.8 + 3.1 845 2.5 81.0 = 3.0 83.2

We begin with the essential factor, generalization. The results are shown
in Table 2. The classifier performance shown in Table 2 was subjected to the
test of the hypothesis that selected pairs of classifiers produce equal means.
As previously described, in regard to percentages, the hypothesis testing was
conducted on transformed data underlying the values shown in Table 2. For
the Iris database the hypothesis is rejected at the 0.0002 level for all distinct
pairs of classifiers. For the Sonar and Voting databases the hypothesis is
rejected (0.0002 level) for all distinct pairs except (INN, RCE-2). These
results strongly indicate that the algorithm differences result in significant
performance differences by these classifiers.

Next, the effect of hyperspheres on the number of training epochs
needed to learn the set of training instances is displayed in Table 3. As in
Table 2, the RCE classifiers only approach the incremental nearest-neighbor
classifier INN in performance.

Lastly, turning to the issue of classifier size, the percentage of instances
from the set of training instances are needed to classify all training instances
correctly. The results, shown in Table 4, indicate that only in the case of the
Iris database is RCE-1 significantly more efficient of memory than is INN
(k, = k, = 1). Specifically, in a two-tailed test, for the Iris database the

4

TABLE 3. Number of Training Epochs Needed to Classify All Training Instances Correctly

Iris Sonar Voting Weighted

Classifier database database database average
INN (k, = k, = 1) 23 £ 0.6 32 0.8 25 £0.6 2.6
RCE-2 24 £0.7 32 £ 0.7 29 £07 2.9
DSND 2.6 £ 0.7 3.7+0.7 33 +0.7 33
RCE-1 3.0 £ 09 42 £ 1.0 32 +£0.8 34

RCE CLASSIFIERS: THEORY AND PRACTICE 501

TABLE 4. Percentage of the Training Set Instances Required to Classify All Training
Instances Correctly

Instances required (%)

Iris Sonar Voting Weighted

Classifier database database database average
INN (k, = k; = 1) 17.5 £ 2.0 49.1 £ 35 127 £ 19 23.5
RCE-1 13:5£72.7 47.6 £ 3.6 145 +£19 23.6
RCE-2 174 £ 23 56.0 £ 3.3 159 £ 1.7 27.3
DSND 173 £ 1.8 60.8 £ 2.3 214 £2.0 31.9

hypothesis that INN (k, = k, = 1) and RCE-1 produce the same mean is
rejected at the 0.0002 significance level. Note the ineffectiveness of hyper-
spheres in reducing storage requirements when the training instances exhibit
highly nonlinear class separation as in the Sonar database. Here INN is
markedly superior in storage efficiency to RCE-2.

To summarize, a few simple modifications to the original RCE classifier
DSND, yielding the classifier RCE-2, improve correct classification of new
instances from 83.2 to 90.7%. Nevertheless, viewing RCE-2 as an incre-
mental nearest-neighbor classifier with hyperspheres leads to the conclusion
that hyperspheres are not positively contributing to the performance of RCE-
2. By all measures, management of hyperspheres is an unjustified computa-
tional cost.

Proposal for Improved Generalization

Nearest-neighbor classification better approximates the Bayes error rate as
the number of samples k used in classification is increased, provided that k
is a small fraction of the stored instances (Duda and Hart, 1973: 105).
Known as the k-nearest-neighbor rule, k is typically chosen as 3, or 5 for the
2-class case so that one class will always have a majority of votes. When the
number of stored samples is small, though, it is not necessarily beneficial to
take k large because nonlocal samples tend to influence the decision.
Viewing RCE-2 as a specialization of INN (k, = k, = 1) suggests that
the generalization of nearest neighbor (k, = 1) to (k, > 1) can be applied to
RCE classifiers. Whereas in the nearest-neighbor classifier a large number
of samples serves to limit the region over which samples are obtained, the
RCE classifier might provide a similar restriction with its hypersphere

502 M. J. HUDAK

boundaries. The generalization component of RCE-2 was modified to test
this approach. The resulting algorithm, named RCE-3 (described in Appen-
dix B), is compared with its predecessor RCE-2 in Table 5.

The performance of the nearest-neighbor classifier indicates that these
databases are not suited for improved generalization by increasing the num-
ber of nearest neighbors from 1 to 3. Both the Iris and Sonar databases
register performance deficits; the Voting database alone shows a modest
improvement. The relationship between the performance of RCE-2 and
RCE-3 mirrors that of its nearest-neighbor counterparts, suggesting that hy-
perspheres managed by RCE-3’s training algorithm are insufficient to limit
nonlocal influence at generalization.

Rejection of Patterns from an Unknown Class

One proposed advantage of hyperspherical classifiers over nearest-neighbor
classifiers is the ability to recognize patterns from an unknown class as not
belonging to any class known to the classifier, a point made by Li (1988: 21)
but not tested. Therefore, experiments were conducted with the Iris database
to test whether these RCE classifiers can reject patterns from an unknown
class. All trials were performed with the training instances used in previous
experiments, but with all instances from one of the three classes removed in
turn. Trials were performed with DIST_PCT set at 55, 75, and 95% and for
algorithm RCE-2 also at 35%. Unlike previous experiments, values obtained
are the result of 50 trials. Results from RCE-1 and RCE-2 are shown in
Table 6.

The values for the classification of unknown instances shown in Table 6

TABLE 5. Correct Classification of New Instances

Correct classification (%)

Iris Sonar Voting Weighted

Classifier database database database average
Nearest-neighbor (k, = 1) 96.0 95.2 91.2 93.0
Nearest-neighbor (k, = 3) 94.0 85.6 94.0 91.6
RCE-2 95.0 + 2.4 91.8 £2.2 89.2 £ 2.0 90.7
RCE-3 942 + 2.4 82.0 £ 3.7 90.0 £ 2.5 88.3

Plurality voting at generalization (RCE-3) compared with class assignment of nearest
enclosing hypersphere (RCE-2). Nearest-neighbor classifiers are provided for comparison.

RCE CLASSIFIERS: THEORY AND PRACTICE 503

TABLE 6. Detection of Instances from an Unknown Class in the Test Set for Each
“ of the Three Classes in the Iris Database

Instances (%)

Class removed: Iris setosa Iris versicolour Iris virginica

Classifier tested: RCE-1 RCE-2 RCE-1 RCE-2 RCE-1 RCE-2

Correct detection

of instances from

unknown class 100 £ 0.0 70.5 = 43 8.0 + 8.3 6.4 £ 17 189 = 18 16.7 = 24
Correct classification

of instances from

known classes 855+ 175 86.3 £ 10 100 = 0.0 994 +23 994 +2.0 954 % 2.0

Also shown is the classifier’s ability to classify patterns from the two known classes in the test set simultaneously
and correctly.

were chosen as the best over the range of DIST _PCT values tested. For
different classes removed from the training set, different values of
DIST_PCT provided the best rejection of instances from the unknown
class in the test set.

Table 6 demonstrates that an RCE classifier’s labeling a test instance as
not belonging to a known class is unpredictable. Only the performance of
RCE-1 with the removal of instances from the class Iris setosa provides
acceptable detection of the unknown class, but it then correctly classifies
only 85% of the test instances from the remaining known classes. Removal
of each class in turn does not compromise recognition of patterns from the
known classes, but detection of instances from the unknown class never
exceeds 20% of the test instances from the unknown class.

This behavior seems an inescapable consequence of the fundamental
characteristics of the RCE classifier. Because the RCE classifier’s training
algorithm initializes hyperspheres with large radii and shrinks them only
when necessary, the RCE classifier tends to overgeneralize. Hyperspheres
will never be smaller than is necessary to classify all the training instances
correctly. But the same hyperspheres may be so large that they cover regions
of the instance space occupied by patterns from an unknown class. Hence,
the ability to classify a new pattern as an instance of an unknown class
depends critically on the orientation of the unknown class to the known ones.
If, for example, the unknown class lies between two known classes in the
instance space, it is impossible that instances of the unknown class will be
classified as ‘‘unknown.” Hyperspheres of instances from the known classes

504 M. J. HUDAK

on either side will overlap the region of unknown class and be bounded only
by instances from the other known class. Within the hypersphere paradigm,
hypersphere modification by positive reinforcement, as done by Batchelor
(1974), seems the only solution. This, however, confronts us with a training
procedure not guaranteed to converge to its error criterion.

SUMMARY

The significant aspects of this paper are now summarized.

1. Restricted Coulomb energy classifiers (RCE), as typically implemented
(Lee, 1989; Li, 1988; Scofield et al., 1988), are related to hyperspheri-
cal classifiers as defined by Batchelor (1974).

2. Hyperspherical classifiers (Batchelor, 1974) are similar to ‘‘prototype
models’’ of concept formation from cognitive psychology.

3. RCE classifiers (Scofield et al., 1988) are similar to ‘‘exemplar
models”’ of concept formation from cognitive psychology.

4. Simple RCE classifiers [e.g., DSND (Li, 1988)] are competitive with
well-known classifiers in their ability to generalize, but their perfor-
mance is at the lower end of the range.

5. Modifications to the simple RCE classifier DSND (Li, 1988) that pro-
duce RCE-2 increase average correct classification of test instances
from 83.2 to 90.7%, an absolute increase of 7.5 percentage points and a
relative improvement in performance of 9.0% over that of DSND. The
modifications to DSND do not entail significant differences in computa-
tional costs.

6. RCE-2, the best-performing RCE classifier (in terms of accurate classi-
fication of test instances), provides no advantage over its underlying
incremental neatest-neighbor component INN in terms of average gener-
alization accuracy, variation in generalization accuracy, average storage
requirements, or average number of training epochs.

7. The nearest-neighbor classifier (k, = 1) correctly classified test in-
stances better than any other classifier examined.

8. The incremental nearest-neighbor classifier INN performed second to
the nearest-neighbor classifier in correct classification of test instances
and at a substantial reduction in storage. INN is identical to IB2 (Aha et
al., 1991), except for the choice of distance metric. The interested
reader is referred to this work for a thorough examination of the classi-
fier.

RCE CLASSIFIERS: THEORY AND PRACTICE 505

9. Generalizing RCE-2 in the manner of the nearest-neighbor classifier
(i.e., increasing the number of nearest neighbors from 1 to 3) mirrors
the performance trend of the nearest-neighbor classifier.

10. Detection of instances from an unknown class is possible with an RCE
classifier, but performance is unpredictable, typically unsatisfactory, and
subject to the characteristics of the instance database.

DISCUSSION

The experiments reveal no advantage to using a simple RCE classifier such
as DSND or RCE-2 in lieu of the underlying incremental nearest-neighbor
component INN. Nevertheless, the possibility still exists that an RCE classi-
fier can be built that, on average, performs better than its incremental
nearest-neighbor component. One approach was presented in which RCE-2,
the RCE classifier whose hyperspheres are least effective among the RCE
classifiers tested, was modified to perform generalization with k, = 3 in-
stead of k, = 1. The results were equivocal but consistent with the perfor-
mance of the nearest-neighbor classifier (k, = 3). These results indicate that
hyperspheres in RCE-3 are incapable of preventing nonlocal influence at
generalization in a small database. An interesting experiment would compare
the modification of DSND for k, = 3 with the original DSND, RCE-2,
RCE-3, INN (k, = 1 and 3) and nearest-neighbor (k, = 1 and 3) classifier.
Hyperspheres in DSND exercise more influence at generalization than hy-
perspheres in any other RCE classifier tested and thus have the best chance
of preventing nonlocal interference at generalization.

Another approach to improved generalization, suggested by Scofield et
al. (1988), associates frequency counts with stored points in an attempt to
approximate the probability densities of the distributions. A similar approach
for instance-based classifiers has been taken by Aha et al. (1991) in their IB3
algorithm. Comparison of IB3 with its RCE counterpart would make an
interesting study, especially in the application of these classifiers to noisy
data.

Although a hyperspherical classifier can, in theory, detect when an in-
stance does not belong to a known category, the experiments conducted here
indicate that simple RCE classifiers cannot perform this function with a high
degree of confidence. Perhaps the more general hyperspherical classifier
(Batchelor, 1974) using positive feedback and relocation of stored patterns
can more effectively recognize instances from an unknown class. But this
brings forth the possibility of computationally intensive training

506 M. J. HUDAK

procedures—even ones no longer guaranteed to converge to their error crite-
rion.

Hyperspherical classifiers have been investigated since the 1960s. RCE
classifiers have been discussed in the literature since Scofield et al. (1988)
and previously existed within the conceptual framework described by Reilly
et al. (1982). Until the present study the role of hyperspheres in the classifi-
cation process had not been examined. As hyperspheres in several RCE
classifiers have now been shown to provide no value, I think it incumbent
upon future developers of hyperspherical classifiers to demonstrate that the
hyperspheres in their classifiers positively contribute to their classifier’s per-
formance.

ACKNOWLEDGMENTS

I wish to thank the reviewers for many suggestions that contributed to the
clarity and accuracy of this article. Thanks also to Kenneth R. Anderson,
George M. Chaikin, Martin S. Glassman, Narendra K. Gupta, Stephen J.
Hanson, Steven W. Norton, and Raymond L. Watrous for their comments on
early drafts of this work. Marianne Steenken wrote much of the FORTRAN
code for the RCE and nearest-neighbor classifiers.

APPENDIX A: DATA

Experiments were performed with the three databases described below.

1. Iris database (Fisher 1936)
Availability: University of California at Irvine
Number of classes: 3
Training (100 instances): 33 % Iris virginica, 33 % Iris versicolour, 34 %
Iris setosa

Testing (50 instances): 34 % Iris virginica, 34% Iris vesicolour, 32%
Iris setosa

Number of attributes: 4 numeric

Missing attribute values: None

Comments: One of the best-known databases in the pat-

tern recognition literature. Iris setosa is lin-
early separable from the other two classes;
the other two are not linearly separable from
each other.

RCE CLASSIFIERS: THEORY AND PRACTICE 507

2. Sonar database (Gorman and Sejnowski, 1988)

Availability:

Number of classes:
Training (104 instances):
Testing (104 instances):
Number of attributes:
Missing attribute values:
Comments:

Carnegie Mellon University

2

47.1% mines, 52.9% rocks

59.6% mines, 40.4% rocks

60 numeric

None

The database used by Gorman and Sejnowski
in their study of the classification of sonar sig-
nals with a neural network. The task is to
learn to distinguish between sonar signals
bounced off a metal cylinder and those
bounced off a roughly cylindrical rock.

3. Voting database (1984 U.S. Congressional voting records)

Availability:

Number of classes:
Training (218 instances):
Testing (217 instances):
Number of attributes:
Missing attribute values:

Comments:

APPENDIX B: TRAINING

University of California at Irvine

2

62.8% Democrat, 37.2% Republican

59.9% Democrat, 40.1% Republican

16 binary (Yea, Nay)

Several (each treated as the third value: ‘“Un-
known’’)

Includes votes for each member of the U.S.
House of Representatives on the 16 key votes
identified by the Congressional Quarterly Al-
manac. Because the classifiers require nu-
meric features, the following substitutions
were made: —1 for Nay, 1 for Yea, O for
Unknown. The task is to learn to predict party
affiliation from voting action.

AND GENERALIZATION ALGORITHMS

Identifiers

CP1: Closest pattern (city-block distance using integer features) in the
classifier to TR_PAT(I).
CP2: CP3(1): closest pattern (city-block distance using integer features)

508 M. J. HUDAK

in the classifier to TR_PAT (I) whose hypersphere encloses
TR_PAT(D).

CP3(): All patterns in the classifier whose hyperspheres enclose
TR_PAT(I) ordered by increasing city-block distance from
TR_PAT(ID).

DIST_PCT: User-selected parameter (.01-.99) for setting a stored
pattern’s radius as the percentage of the distance to the nearest stored
pattern of a different class.

k,: Number of nearest neighbors returned per test instance at
generalization.

k,: Number of nearest neighbors returned per training instance during
training.

TR_PAT(I): Ith pattern (instance) in the training set.

Functions

class(): Returns the class of its argument.
class_of_majority(): Returns class of majority of its arguments.
dist(x,y): Returns to city-block distance between its arguments.
min{(x,y): Returns lesser of its arguments.

radius(): Addresses the radius of its argument.

Notes

1. Italicized remarks are high-level descriptions of complex operations.

2. Test enclosed in braces { } is a comment.

3. The value 256 used throughout the algorithms represents an
implementation restriction on each pattern feature’s maximum number
of distinct values.

DSND {Disjoint Spheres/No Drift, from Li (1988: 62)}

Training algorithm: {Summary: Modify all hyperspheres of patterns from
other classes whose hyperspheres enclose the new training instance. }

RCE CLASSIFIERS: THEORY AND PRACTICE

509
do until (

All training instances are correctly classified and no changes

are made to the classifier during a training epoch)
for i :=

1 step 1 until Number of training patterns do

Return N patterns (CP3(k), k £ N) ordered by increasing distance from
TR_PAT(i) whose hyperspheres enclose TR_PAT(1i).

if (N > 0) then

if (All patterns returned are from the same class)

then
if (class(TR_PAT(i)) # class(CP2)) then
Store TR_PAT(i) into classifier.

radius (TR_PAT(i)) := DIST_PCT X dist(TR_PAT (i), CP2)

for j :=

1 step 1 until N do

radius(CP3(j)) :=

= DIST_PCT X dist(TR_PAT (i), CP3(j))
endfor

endif

else (All patterns returned are not from the same class}
for j

1 step 1 until N do

if (class(TR_PAT(i)) # class(CP3(j))) then

radius(CP3(j)) :=

DIST_PCT x dist(TR_PAT (i),

CP3(3))
endif

endfor

for j :=

1 step 1 until N do

if (class(TR_PAT(i)) # CP3(j)) then
Store TR_PAT(i) into classifier.

radius (TR_PAT(i)) := DIST_PCT X dist(TR_PAT(i), CP3(3j))
stop

endif
endfor
endif

else (N=0}

Store TR_PAT (i) into classifier.

radius (TR_PAT(i))

min(DIST_PCT xdist(TR_PAT(i), Nearest stored

510 M. J. HUDAK

pattern whose class is not equal to class(TR_PAT(i))),
(Number of features in each pattern X256))
endif
endfor

enddo

Generalization algorithm:

Return class(Closest stored pattern of an enclosing hypersphere)

RCE-1 {Modified from DSND}

Training algorithm: {Summary: If all hyperspheres enclosing the training
instance are from the same incorrect class, then decrease all of these hyper-
spheres. If not all hyperspheres enclosing the training instance are from the
same incorrect class, but the closest stored pattern whose hypersphere en-
closes the training instance is from the wrong class, then reduce this hyper-
sphere. }

do until (All training Instances are correctly classified and no changes
are made to the classifier during a training epoch)
for 1 := 1 step 1 until Number of training patterns do
Return N patterns (CP3(k), k € N) ordered by increasing distance from
TR_PAT (i) whose hyperspheres enclose TR_PAT(i).
if (N > 0) then
if (All patterns returned are from one class) then
if (class{(TR_PAT(i)) # class(CP2)) then
Store TR_PAT (i) into classifier.
radius (TR_PAT(i)) := DIST_PCT x dist(TR_PAT(i), CP2)
for j := 1 step 1 untii N do

radius(CP3(j)) := DIST_PCT X dist(TR_PAT (i), CP3(j))

RCE CLASSIFIERS: THEORY AND PRACTICE 511

endfor
endif
else { All patterns not from one class }
if (class(TR_PAT(i)) # class(CPZ)) then

Store TR_PAT (i) into classifier.

radius (CP2) := DIST_PCT X dist(TR_PAT(i), CP2)
radius (TR_PAT(i)) := DIST_PCT x dist(TR_PAT (i), CP2)
endif
endif

else {N=0)
Store TK_PAT (i) into classifier.
radius (TR_PAT(1i)) := min(DIST_PCT xdist{TR_PAT(i), Nearest stored
pattern whose class 1Is not equal to class(TR_PAT(i)),
(Number of features In each pattern X256))
endif
endfor

enddo

Generalization algorithm: Generalization algorithm for DSND.

RCE-2 {Modified from RCE-1}

Training algorithm. {Summary: Modify only the hypersphere of the closest
stored pattern from a different class. }

do until (All training Instances are correctly classified and no changes

are made to the classifier during a training epoch)

for i := 1 step 1 until Number of training patterns do
if (CP2 exists for TR_PAT(i)) then
if (class(TR_PAT(i)) # class{(CP2)) then

Store TR_PAT(i) into classifier.

512 M. J. HUDAK

radius (TR_PAT(i)) := DIST_PCT x dist(TR_PAT(i), CP2)
radius (CP2) := DIST_PCT x dist(TR_PAT(i), CP2)
endif
else

Store TR_PAT (i) into classifier.
radius (TR_PAT (1)) := min(DIST_PCT Xxdist(TR_PAT (i), Nearest stored
pattern whose class 15 not egual to class(TR_PAT(i))),
(Number of features in each pattern X256))
endfor

enddo

Generalization algorithm: Generalization algorithm for DSND.

RCE-3

Training algorithm: Training algorithm for RCE-2.

Generalization algorithm:

if (Number of classes of training instances < 3) then
Recall maximum of 3 closest patterns whose hyperspheres enclose the test
pbattern.
else
Recall all patterns whose hyperspheres enclose the test pattern.
endif
if (Plurality of patterns returned belong to one class C) then
Return C.
else
Return class(Closest pattern of an enclosing hypersphere)

endif

RCE CLASSIFIERS: THEORY AND PRACTICE 513

INN {Incremental Nearest-Neighbor Classifier}

Training algorithm:

do until (All training instances are correctly classified and no changes
are made to the classifier during a training epoch)
for i := 1 step 1 until Number of training patterns do
1f(class(TR_PAT(i)) # class(CPl) or classifier contains no patterns)
then
Store TR_PAT (i) into classifier.
endif
endfor

enddo

Generalization algorithm:

Return class(Nearest stored pattern to test pattern)

REFERENCES

Aha, D. W., D. Kibler, and M. K. Albert. 1991. Instance-Based Learning Algo-
rithms. Machine Learning 6:37-66.

Alder, H. L., and E. B. Roessler. 1972. Introduction to Probability and Statistics.
San Francisco: W. H. Freeman.

Bachmann, C. M., L. N. Cooper, A. Dembo, and O. Zeitouni. 1987. A Relaxation
Model for Memory with High Storage Density. Proc. Natl. Acad. Sci. USA
84:7529-7531.

Batchelor, B. G., and B. R. Wilkins. 1968. Adaptive Discriminant Functions. Pat-
tern Recogn. I.E.E.E. Conf. Publ. 42:168-178.

Batchelor, B. G. 1969. Learning Machines for Pattern Recognition. Ph.D. thesis,
University of Southampton, Southampton, England.

Batchelor, B. G. 1974. Practical Approach to Pattern Classification. New York:
Plenum.

Batchelor, B. G. 1978. Classification and Data Analysis in Vector Space. In Pattern
Recognition, ed. B. G. Batchelor, pp. 67-116. London: Plenum.

Cooper, P. W. 1962. The Hypersphere in Pattern Recognition. Inform. Control
5:324-346.

514 M. J. HUDAK

Cooper, P. W. 1966. A Note on an Adaptive Hypersphere Decision Boundary. IEEE
Trans. Electron. Comput. 948-949.

Dembo, A., and O. Zeitouni. 1988. General Potential Surfaces and Neural Net-
works. Phys. Rev. A 37(6):2134-2143.

Dowdy, S., and S. Wearden. 1991. Statistics for Research, 2nd ed. New York: Wiley.

Duda, R. O., and P. E. Hart. 1973. Pattern Classification and Scene Analysis. New
York: Wiley.

Fahlman, S. E. 1989. Faster-Learning Variations on Back-Propagation: An Empiri-
cal Study. In Proceedings of the 1988 Connectionist Models Summer School, eds.
D. S. Touretzky, G. Hinton, and T. Sejnowski, pp. 38-51. Palo Alto, CA: Mor-
gan Kaufmann.

Fahlman, S. E., and C. Lebiere. 1990. The Cascade-Correlation Learning Architec-
ture. Technical Report: CMU-CS-90-100, School of Computer Science, Carnegie
Mellon University, Pittsburgh.

Fisher, R. A. 1936. The Use of Multiple Measurements in Taxonomic Problems.
Annu. Eugenics 7(2):179-188.

Flynn, M. J., R. Zeidman, and E. Lochner. 1988. Sparse Distributed Memory Pro-
totype: Address Module Hardware Guide. Technical Report CSL-TR88-373,
Stanford University Computer Systems Laboratory, Palo Alto, CA.

Gorman, R. P, and T. J. Sejnowski. 1988. Analysis of Hidden Units in a Layered
Network Trained to Classify Sonar Targets. Neural Networks 1:75-89.

Hopfield, J. J. 1982. Neural Networks and Physical Systems with Emergent Collec-
tive Computational Abilities. Proc. Natl. Acad. Sci. USA 79:2554-2558.

Kanerva, P. 1988. Sparse Distributed Memory. Cambridge, MA: MIT Press.

Lee, Y. 1989. Classifiers: Adaptive Modules in Pattern Recognition Systems. Mas-
ter’s thesis, Department of Electrical Engineering and Computer Science, Massa-
chusetts Institute of Technology, Cambridge.

Lee, Y., and R. P. Lippmann. 1990. Practical Characteristics of Neural Network and
Conventional Pattern Classifiers on Artificial and Speech Problems. In Advances
in Neural Information Processing Systems 2, ed. D. S. Touretzky, pp. 168-177,
Palo Alto, CA: Morgan Kaufmann.

Li, R. 1988. An Experimental Approach to Module Diagnostics Using an Associa-
tive Memory. Master’s thesis, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, Cambridge.

Matheus, C. J. 1987. Conceptual Purpose: Implications for Representation and
Learning in Machines and Humans. Report No. UIUCDCS-R-87-1370, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign, Urbana.

Medin, D. L., and M. M. Schaffer. 1978. Context Theory of Classification Learn-
ing. Psychol. Rev. 85(3):207-238.

Medin, D. L., and E. E. Smith. 1984. Concepts and Concept Formation. Ann. Rev.
Psychol. 35:113-138.

Moody, J., and C. Darken. 1989. Learning with Localized Receptive Fields. In

RCE CLASSIFIERS: THEORY AND PRACTICE 515
Proceedings of the 1988 Connectionist Models Summer School, eds. D. S.
Touretzky, G. Hinton, and T. Sejnowski, pp. 133-143. Palo Alto, CA: Morgan
Kaufmann.

Nowlan, S. J. 1990. Maximum Likelihood Competitive Learning. In Advances in
Neural Information Processing Systems 2, ed. D. S. Touretzky, pp. 574-582. Palo
Alto, CA: Morgan Kaufmann.

Posner, M. 1., and S. W. Keele. 1970. Retention of Abstract Ideas. J. Exp. Psychol.
83:304-308.

Potter, T. W. 1987. Storing and retrieving data in a parallel distributed memory
system. Ph.D. dissertation, Department of Systems Science, T. J. Watson School
of Engineering, Applied Science and Technology, State University of New York,
Binghamton.

Quinlan, J. R. 1986. Induction on Decision Trees. Machine Learning 1:81-106.

Reed, S. K. 1972. Pattern Recognition and Categorization. Cogn. Psychol. 3:382-
407.

Reilly, D. L., L. N. Cooper, and C. Elbaum. 1982. A Neural Model for Category
Learning. Biol. Cybernet. 45:35-41.

Reilly, D. L., C. Scofield, C. Elbaum, and L. N. Cooper. 1987. Learning System
Architectures Composed of Multiple Learning Modules. Proc. IEEE First Inter-
national Conference on Neural Networks, San Diego, June 21-24.

Rimey, R., P. Gouin, C. Scofield, and D. L. Reilly. 1986. Real-Time 3-D Object
Classification Using a Learning System. Intelligent Robots and Computer Vision
Proc. SPIE 726:552-557.

Sachs, L. 1982. Applied Statistics, English translation by Z. Reynarowych. New
York: Springer-Verlag.

Scofield, C. L., D. L. Reilly, C. Elbaum, and L. N. Cooper. 1988. Pattern Class
Degeneracy in an Unrestricted Storage Density Memory. In Neural Information
Processing Systems, ed. D. Z. Anderson, pp. 674-682. New York: American
Institute of Physics.

Requests for reprints should be sent to Michael J. Hudak.

